Bayesian Estimation and Prediction for the Power Law Process with Left-Truncated Data

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-Bayesian Estimation and Prediction under Weibull Interval Censored Data

In this paper, a one-sample point predictor of the random variable X is studied. X is the occurrence of an event in any successive visits $L_i$ and $R_i$ :i=1,2…,n (interval censoring). Our proposed method is based on finding the expected value of the conditional distribution of X given $L_i$ and $R_i$ (i=1,2…,n). To make the desired prediction, our approach is on the basis of approximating the...

متن کامل

Bayesian Inference for The Power Law Process

The power law process has been used to model reliability growth, software reliability and the failure times of repairable systems. This article reviews and further develops Bayesian inference for such a process. The Bayesian approach provides a unified methodology for dealing with both time and failure truncated data, As well as looking at the posterior densities of the parameters of the power ...

متن کامل

Estimation of Parameters of the Power-Law-Non-Homogenous Poisson Process in the Case of Exact Failures Data

  This expository article shows how the maximum likelihood estimation method and the Newton-Raphson algorithm can be used to estimate the parameters of the power-law Poisson process model used to analyze data from repairable systems .

متن کامل

Asymptotic Behaviors of the Lorenz Curve for Left Truncated and Dependent Data

The purpose of this paper is to provide some asymptotic results for nonparametric estimator of the Lorenz curve and Lorenz process for the case in which data are assumed to be strong mixing subject to random left truncation. First, we show that nonparametric estimator of the Lorenz curve is uniformly strongly consistent for the associated Lorenz curve. Also, a strong Gaussian approximation for ...

متن کامل

Quantile Estimation for Left Truncated and Right Censored Data

In this paper we study the estimation of a quantile function based on left truncated and right censored data by the kernel smoothing method. Asymptotic normality and a Berry-Esseen type bound for the kernel quantile estimator are derived. Monte Carlo studies are conducted to compare the proposed estimator with the PL-quantile estimator.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Data Science

سال: 2021

ISSN: 1680-743X,1683-8602

DOI: 10.6339/jds.201107_09(3).0009